KINTEX-7 FPGA Development Board AX7325

User Manual

Version Record

Version	Date	Release By	Description
Rev 1.1	2019-04-27	Rachel Zhou	First Release

www.alinx.com 2 / 48

Table of Contents

Version Record	2
Part 1: FPGA Development Board Introduction	5
Part 2: FPGA Chip	8
Part 3:DDR3 DRAM	10
Part 4:SODIMM memory module interface	15
Part 5: QSPI Flash	20
Part 6: Clock configuration	22
Part 6.2: 200Mhz differential clock source	22
Part 6.3: Programmable clock source	23
Part7: USB to Serial Port	25
Part 8: SFP Interface	26
Part 9: QSFP+ Fiber interface	29
Part 10: PCle slot	31
Part 11: Temperature Sensor	33
Part 12: SD Card Slot	34
Part 13: FMC connector	36
Part 14: Expansion Header	40
Part 15: LED Light	41
Part16: User Buttons	43
Part 17: JTAG Interface	44
Part 18: Power Supply	45
Part19: Fan	47
Part 20: Structure Diagram	48

The AX7325 FPGA development board, it is the XILINX KINTEX-7 FPGA development platform.

The AX7325 FPGA development platform uses XILINX's KINTEX-7 chip XC7K325 solution. The FPGA development board mounts four pieces of 512MB high-speed DDR3 SDRAM chips, and a SODIMM interface on the board is used to expand the memory strip of DDR3. FPGA chip configuration uses a 128Mb QSPI FLASH chip

In the design of expansion board, we have extended a wealth of interfaces for users, such as 1 PClex8 interface, 4 10G SFP interface, 1 40G QSFP+ optical interface, 1 UART serial port, 1 SD card slot, 1 FMC extension port, 1 40-pin expansion ports. It meets users' requirements for high-speed data exchange, data storage, video transmission processing and industrial control. It is a "professional" FPGA development platform, for high-speed data transmission and exchange, pre-verification and post-application of data processing is possible. This product is very suitable for students, engineers and other groups engaged in KINTEX-7FPGA development.

www.alinx.com 4 / 48

Part 1: FPGA Development Board Introduction

The AX7325 FPGA development board is mainly composed of KINTEX-7 main chip, 4 DDR3, 1 memory stick SODIMM interface, 1 QSPI FLASH and some peripheral interfaces. The FPGA development board uses Xilinx's KINTEX-7 series of chips, model number XC7K325TFFG900. Four DDR3 memory chips are connected to the HP port of the FPGA chip, each with a DDR3 capacity of up to 512M bytes, which makes up 64-bit data bandwidth. A SODIMM interface is connected to the HR port of the FPGA to fit a 64-bit DDR3 memory module. A 128Mb QSPI FLASH is used to statically store configuration files or other user data of the FPGA chip.

The AX7325 development board expands the rich peripheral interface, including one PClex8 interface, four 10G optical SFP interfaces, one 40G optical fiber + QSFP interface, one UART serial interface, one SD card interface, and one FMC expansion interface. 1 40-pin expansion port and some button LEDs.

www.alinx.com 5 / 48

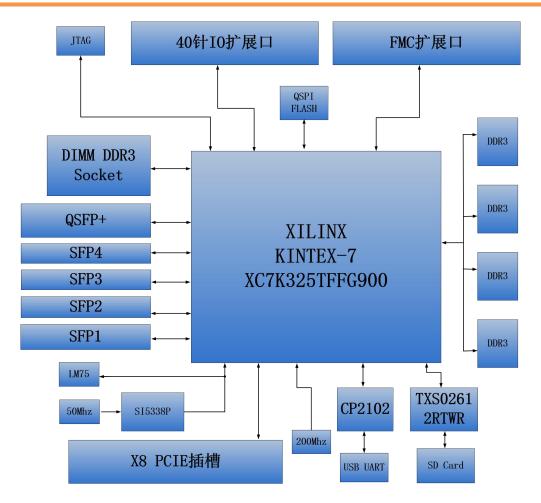


Figure 1-1: The Schematic Diagram of the AX7325

Through this diagram, you can see the interfaces and functions that the AX7325 FPGA Development Board contains:

Xilinx KINTEX-7 FPGA chip XC7K325TFFG900

> DDR3

With four large-capacity 512 Mbytes (2 GB total) high-speed DDR3 SDRAM, used as FPGA data storage, image analysis cache, data processing.

QSPI FLASH

A 128Mbit QSPI FLASH memory chip can be used as a storage for FPGA chip configuration files and user data;

PCIe x8 interface

A standard PCIEx8 interface for PCIE communication with computer motherboards, supports the PCI Express 2.0 standard,

www.alinx.com 6 / 48

single-channel communication rates up to 5Gbps.

4 SFP interfaces

The four high-speed transceivers of the GTX transceiver of the FPGA are connected to the transmission and reception of four optical modules to realize four high-speed optical fiber communication interfaces. Each fiber optic data communication receives and transmits at speeds of up to 10 Gb/s.

> 1 QSFP + optical interface

The four high-speed transceivers of the GTX transceiver of the FPGA are connected to the optical module interface of a QSPF+, to implement the optical communication interface of the QSFP+. Fiber optic data communications receive and transmit at speeds of up to 40 Gb/s.

DDR3 memory module interface

One SODIMM memory module interface is used to assemble a DDR3 memory module, and the DDR3 data width of the interface is 64 bits. The memory stick SODIMM interface expands the storage space and data bandwidth for the FPGA development board.

USB Uart interface

1-channel Uart to USB interface for communication with the computer for user debugging. The serial port chip adopts the USB-UAR chip of Silicon Labs CP2102GM, and the USB interface adopts the MINI USB interface.

Micro SD slot

1 Micro SD card slot

Temperature and humidity sensor

Onboard a temperature and humidity sensor chip LM75 for detecting the temperature and humidity of the environment around the board

FMC expansion ports

A standard FMC LPC expansion port can be connected to various FMC

www.alinx.com 7 / 48

modules of XILINX or ALINX (HDMI input/output module, binocular camera module, high-speed AD module etc.)

JTAG Interface

A 10-pin0.1 spacing standard JTAG ports for FPGA program download and debugging. Users can debug and download FPGAs through XILINX downloader.

Clock

A 200Mhz differential crystal onboard provides a stable clock source for the FPGA system. A programmable clock chip on the board provides a clock source for the GTX, providing a reference clock for PCIE, fiber and DDR operation.

> LED Light 6LEDs, 1 power indicator, 1 DONE configuration indicator, 4 FPGA control indicators

Button 2 user buttons, connect to the normal IO of the FPGA.

Part 2: FPGA Chip

The FPGA development board uses Xilinx's KINTEX-7 FPGA chip, model number XC7K325T-2FFG900I. The speed class is 2 and the temperature class is industrial. This model is a FGG900 package with 900 pins and a 1.0mm pitch. The chip naming rules for Xilinx KINTEX-7 FPGA are shown in Figure 2-1 below:

Figure 2-1: The Specific Chip Model Definition of KINTEX-7 Series

www.alinx.com 8 / 48



Figure 2-2: FPGA chip XC7K325T on board

The main parameters of the FPGA chip XC7K325T are as follows

Name	Specific parameters
Logic Cells	33,280
Slices	5,200
CLB flip-flops	41,600
Block RAM (kb)	1,800
DSP48 Slices	90
PCIe Gen2	1
XADC	12bit, 1Mbps AD
GTP Transceiver	16,12.5Gb/s max
Speed Grade	-2
Temperature Grade	Industrial

FPGA power supply system

KINTEX-7 FPGA power supplies are Vccint, Vccbram, Vccaux, Vccaux_io Vcco, VMGTAVCC and VMGTAVTT. VCCINT is the FPGA core power supply pin, which needs to be connected to 1.0V; Vccbram is the power supply pin of FPGA Block RAM, connect to 1.0V; Vccaux is FPGA auxiliary power supply pin, connect 1.8V; Vcco

www.alinx.com 9 / 48

is the voltage of each BANK of FPGA, including BANK0, BANK12~18, BANK32~34. On the AX7325 development board, BANK12~13 is connected to the FMC connector. The default voltage of Vcco is 2.5V, which enables IO to support LVDS interface. BANK16~18, BANK33~35 need to connect DDR3 memory and DDR3 chip, BANK voltage is 1.5V, other BANK voltage is 3.3V. V_{MGTAVCC} is the supply voltage of the internal GTP transceiver of the FPGA, connected to 1.0V, V_{MGTAVTT} is the termination voltage of the GTP transceiver, connected to 1.2V.

The KINTEX-7 FPGA system requires that the power-up sequence be powered by Vccint, then Vccbram, then Vccaux and finally Vcco. If Vccint and Vccbram have the same voltage, they can be powered up at the same time. The order of power outages is reversed. The power-up sequence of the GTP transceiver is VCCINT, then VMGTAVCC, then VMGTAVTT. If VCCINT and VMGTAVCC have the same voltage, they can be powered up at the same time. The power-off sequence is just the opposite of the power-on sequence.

Part 3:DDR3 DRAM

TheAX7325 FPGA development board is equipped with four 512MB DDR3 chips, model MT41K256M16HA-125 (Compatible with MT41J256M16HA-125). Four DDR3 SDRAMs form a 64-bit bus width. Because four DDR3 chips are connected to the HP port of the FPGA, the DDR3 SDRAM can run at speeds up to 800MHz (data rate 1600Mbps), and four DDR3 memory systems are directly connected to the BANK32, BANK33, and BANK34 interfaces of the FPGA. The specific configuration of DDR3 SDRAM is shown in Table 3-1.

Bit Number	Chip Model	Capacity	Factory
U3,U4,U6,U7	MT41K256M16HA-125	256M x 16bit	Micron
	Or		
	MT41J256M16HA-125		

Table 3-1: DDR3 SDRAM Configuration

www.alinx.com 10 / 48

The hardware design of DDR3 requires strict consideration of signal integrity. We have fully considered the matching resistor/terminal resistance, trace impedance control, and trace length control in circuit design and PCB design to ensure high-speed and stable operation of DDR3.

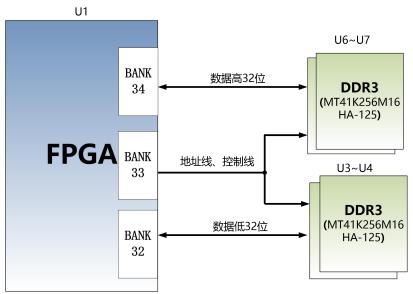


Figure 3-1: The DDR3 DRAM Schematic

Figure 3-2: The DDR3 on the FPGA Board

www.alinx.com 11 / 48

4 DDR3 DRAM pin assignments:

Signal Name	FPGA Pin Name	FPGA Pin
DDR3_D0	IO_L13P_T2_MRCC_32	AD18
DDR3_D1	IO_L16N_T2_32	AB18
DDR3_D2	IO_L14P_T2_SRCC_32	AD17
DDR3_D3	IO_L17P_T2_32	AB19
DDR3_D4	IO_L14N_T2_SRCC_32	AD16
DDR3_D5	IO_L17N_T2_32	AC19
DDR3_D6	IO_L13N_T2_MRCC_32	AE18
DDR3_D7	IO_L18P_T2_32	AB17
DDR3_D8	IO_L8P_T1_32	AG19
DDR3_D9	IO_L7N_T1_32	AK19
DDR3_D10	IO_L10P_T1_32	AD19
DDR3_D11	IO_L7P_T1_32	AJ19
DDR3_D12	IO_L11P_T1_SRCC_32	AF18
DDR3_D13	IO_L8N_T1_32	AH19
DDR3_D14	IO_L10N_T1_32	AE19
DDR3_D15	IO_L11N_T1_SRCC_32	AG18
DDR3_D16	IO_L1N_T0_32	AK15
DDR3_D17	IO_L5N_T0_32	AJ17
DDR3_D18	IO_L2N_T0_32	AH15
DDR3_D19	IO_L4P_T0_32	AF15
DDR3_D20	IO_L4N_T0_32	AG14
DDR3_D21	IO_L5P_T0_32	AH17
DDR3_D22	IO_L2P_T0_32	AG15
DDR3_D23	IO_L1P_T0_32	AK16
DDR3_D24	IO_L19P_T3_32	AE15
DDR3_D25	IO_L24P_T3_32	Y16
DDR3_D26	IO_L22P_T3_32	AC14
DDR3_D27	IO_L20P_T3_32	AA15
DDR3_D28	IO_L23P_T3_32	AA17
DDR3_D29	IO_L22N_T3_32	AD14
DDR3_D30	IO_L23N_T3_32	AA16
DDR3_D31	IO_L20N_T3_32	AB15
DDR3_D32	IO_L22N_T3_34	AK6
DDR3_D33	IO_L23P_T3_34	AJ8

www.alinx.com 12 / 48

DDR3_D34	IO_L22P_T3_34	AJ6
DDR3_D35	IO_L19P_T3_34	AF8
DDR3_D36	IO_L24N_T3_34	AK4
DDR3_D37	IO_L23N_T3_34	AK8
DDR3_D38	IO_L24P_T3_34	AK5
DDR3_D39	IO_L20N_T3_34	AG7
DDR3_D40	IO_L10P_T1_34	AE4
DDR3_D41	IO_L8N_T1_34	AF1
DDR3_D42	IO_L11P_T1_SRCC_34	AE5
DDR3_D43	IO_L8P_T1_34	AE1
DDR3_D44	IO_L12P_T1_MRCC_34	AF6
DDR3_D45	IO_L10N_T1_34	AE3
DDR3_D46	IO_L11N_T1_SRCC_34	AF5
DDR3_D47	IO_L7N_T1_34	AF2
DDR3_D48	IO_L13P_T2_MRCC_34	AH4
DDR3_D49	IO_L16N_T2_34	AJ2
DDR3_D50	IO_L14N_T2_SRCC_34	AH5
DDR3_D51	IO_L13N_T2_MRCC_34	AJ4
DDR3_D52	IO_L16P_T2_34	AH2
DDR3_D53	IO_L17N_T2_34	AK1
DDR3_D54	IO_L14P_T2_SRCC_34	AH6
DDR3_D55	IO_L17P_T2_34	AJ1
DDR3_D56	IO_L2P_T0_34	AC2
DDR3_D57	IO_L4P_T0_34	AC5
DDR3_D58	IO_L1N_T0_34	AD3
DDR3_D59	IO_L6P_T0_34	AC7
DDR3_D60	IO_L5N_T0_34	AE6
DDR3_D61	IO_L5P_T0_34	AD6
DDR3_D62	IO_L2N_T0_34	AC1
DDR3_D63	IO_L4N_T0_34	AC4
DDR3_DM0	IO_L16P_T2_32	AA18
DDR3_DM1	IO_L12P_T1_MRCC_32	AF17
DDR3_DM2	IO_L6P_T0_32	AE16
DDR3_DM3	IO_L24N_T3_32	Y15
DDR3_DM4	IO_L20P_T3_34	AF7
DDR3_DM5	IO_L7P_T1_34	AF3

www.alinx.com 13 / 48

DDR3_DM6	IO_L18P_T2_34	AJ3
DDR3_DM7	IO_L1P_T0_34	AD4
DDR3_DQS0_P	IO_L15P_T2_DQS_32	Y19
DDR3_DQS0_N	IO_L15N_T2_DQS_32	Y18
DDR3_DQS1_P	IO_L9P_T1_DQS_32	AJ18
DDR3_DQS1_N	IO_L9N_T1_DQS_32	AK18
DDR3_DQS2_P	IO_L3P_T0_DQS_32	AH16
DDR3_DQS2_N	IO_L3N_T0_DQS_32	AJ16
DDR3_DQS3_P	IO_L21P_T3_DQS_32	AC16
DDR3_DQS3_N	IO_L21N_T3_DQS_32	AC15
DDR3_DQS4_P	IO_L21P_T3_DQS_34	AH7
DDR3_DQS4_N	IO_L21N_T3_DQS_34	AJ7
DDR3_DQS5_P	IO_L9P_T1_DQS_34	AG4
DDR3_DQS5_N	IO_L9N_T1_DQS_34	AG3
DDR3_DQS6_P	IO_L15P_T2_DQS_34	AG2
DDR3_DQS6_N	IO_L15N_T2_DQS_34	AH1
DDR3_DQS7_P	IO_L3P_T0_DQS_34	AD2
DDR3_DQS7_N	IO_L3N_T0_DQS_34	AD1
DDR3_A0	IO_L1P_T0_33	AA12
DDR3_A1	IO_L1N_T0_33	AB12
DDR3_A2	IO_L2P_T0_33	AA8
DDR3_A3	IO_L2N_T0_33	AB8
DDR3_A4	IO_L3P_T0_DQS_33	AB9
DDR3_A5	IO_L3N_T0_DQS_33	AC9
DDR3_A6	IO_L6N_T0_VREF_33	AB13
DDR3_A7	IO_L4N_T0_33	Y10
DDR3_A8	IO_L5P_T0_33	AA11
DDR3_A9	IO_L5N_T0_33	AA10
DDR3_A10	IO_L6P_T0_33	AA13
DDR3_A11	IO_L8P_T1_33	AD8
DDR3_A12	IO_L7P_T1_33	AB10
DDR3_A13	IO_L7N_T1_33	AC10
DDR3_A14	IO_L15P_T2_DQS_33	AJ9
DDR3_BA0	IO_L8N_T1_33	AE8
DDR3_BA1	IO_L9P_T1_DQS_33	AC12
DDR3_BA2	IO_L9N_T1_DQS_33	AC11

www.alinx.com 14 / 48

DDR3_WE	IO_L10P_T1_33	AD9
DDR3_RAS	IO_L10N_T1_33	AE9
DDR3_CAS	IO_L11P_T1_SRCC_33	AE11
DDR3_S0	IO_L11N_T1_SRCC_33	AF11
DDR3_CKE0	IO_L12P_T1_MRCC_33	AD12
DDR3_ODT	IO_L12N_T1_MRCC_33	AD11
DDR3_CLK0_P	IO_L13P_T2_MRCC_33	AG10
DDR3_CLK0_N	IO_L13N_T2_MRCC_33	AH10
DDR3_RESET	IO_L4P_T0_33	Y11

Part 4:SODIMM memory module interface

The AX7325 development board has a 204PIN SODIMM memory socket that expands the board's storage and data bandwidth and supports up to 8GB of Micron SODIMM DDR3 memory. The FPGA and SODIMM DDR3 memory banks have a data width of 64 bits and a maximum operating speed of 400 MHz (data rate 800 Mbps). By default, the SODIMM memory module is not included. If you need to test it, you need to prepare it yourself. The following Figure 4-1 detailed the 2GB Micron SODIMM memory strip we tested.

Figure 4-1: SODIMM memory test sample

The SODIMM memory module interface is directly connected to the interface of BANK16, BANK17 and BANK18 of FPGA. The hardware connection mode of FPGA and SODIMM DDR3 is shown in Figure 4-2.

www.alinx.com 15 / 48

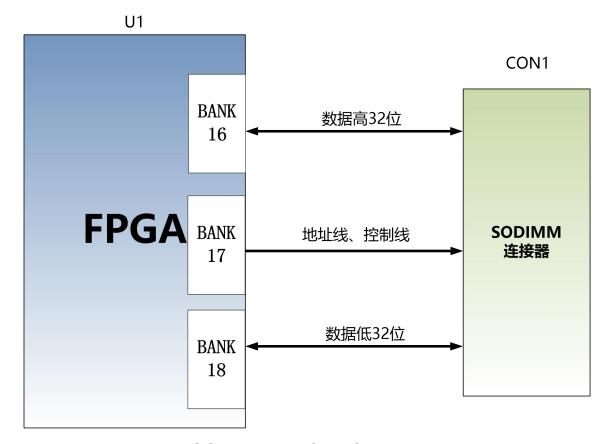


Figure 4-2: SODIMM interface Connection Diagram

Figure 4-3: SODIMM slot on the FPGA Board

www.alinx.com 16 / 48

SODIMM slot pin assignments:

Signal Name	FPGA Pin Name	FPGA Pin
DIMM_DDR3_D0	IO_L2P_T0_18	L15
DIMM_DDR3_D1	IO_L5P_T0_18	K14
DIMM_DDR3_D2	IO_L5N_T0_18	J14
DIMM_DDR3_D3	IO_L6P_T0_18	L11
DIMM_DDR3_D4	IO_L2N_T0_18	K15
DIMM_DDR3_D5	IO_L1P_T0_18	L16
DIMM_DDR3_D6	IO_L4N_T0_18	J13
DIMM_DDR3_D7	IO_L1N_T0_18	K16
DIMM_DDR3_D8	IO_L8N_T1_18	J12
DIMM_DDR3_D9	IO_L8P_T1_18	J11
DIMM_DDR3_D10	IO_L7P_T1_18	H15
DIMM_DDR3_D11	IO_L11N_T1_SRCC_18	G14
DIMM_DDR3_D12	IO_L10P_T1_18	H11
DIMM_DDR3_D13	IO_L10N_T1_18	H12
DIMM_DDR3_D14	IO_L12P_T1_MRCC_18	G13
DIMM_DDR3_D15	IO_L7N_T1_18	G15
DIMM_DDR3_D16	IO_L13P_T2_MRCC_18	D12
DIMM_DDR3_D17	IO_L17P_T2_18	A11
DIMM_DDR3_D18	IO_L13N_T2_MRCC_18	D13
DIMM_DDR3_D19	IO_L14N_T2_SRCC_18	E13
DIMM_DDR3_D20	IO_L16P_T2_18	F11
DIMM_DDR3_D21	IO_L16N_T2_18	E11
DIMM_DDR3_D22	IO_L17N_T2_18	A12
DIMM_DDR3_D23	IO_L14P_T2_SRCC_18	F12
DIMM_DDR3_D24	IO_L22P_T3_18	B13
DIMM_DDR3_D25	IO_L22N_T3_18	A13
DIMM_DDR3_D26	IO_L23N_T3_18	B15
DIMM_DDR3_D27	IO_L23P_T3_18	C15
DIMM_DDR3_D28	IO_L24P_T3_18	B14
DIMM_DDR3_D29	IO_L24N_T3_18	A15
DIMM_DDR3_D30	IO_L20N_T3_18	E15
DIMM_DDR3_D31	IO_L19P_T3_18	F15
DIMM_DDR3_D32	IO_L1N_T0_16	A23
DIMM_DDR3_D33	IO_L4N_T0_16	D24

www.alinx.com 17 / 48

DIMM_DDR3_D34	IO_L4P_T0_16	E24
DIMM_DDR3_D35	IO_L5N_T0_16	E26
DIMM_DDR3_D36	IO_L2P_T0_16	E23
DIMM_DDR3_D37	IO_L1P_T0_16	B23
DIMM_DDR3_D38	IO_L2N_T0_16	D23
DIMM_DDR3_D39	IO_L6P_T0_16	G23
DIMM_DDR3_D40	IO_L8N_T1_16	B24
DIMM_DDR3_D41	IO_L8P_T1_16	C24
DIMM_DDR3_D42	IO_L11N_T1_SRCC_16	C26
DIMM_DDR3_D43	IO_L7N_T1_16	A27
DIMM_DDR3_D44	IO_L10P_T1_16	A25
DIMM_DDR3_D45	IO_L10N_T1_16	A26
DIMM_DDR3_D46	IO_L7P_T1_16	B27
DIMM_DDR3_D47	IO_L11P_T1_SRCC_16	D26
DIMM_DDR3_D48	IO_L13P_T2_MRCC_16	D27
DIMM_DDR3_D49	IO_L17N_T2_16	A30
DIMM_DDR3_D50	IO_L16N_T2_16	C30
DIMM_DDR3_D51	IO_L16P_T2_16	D29
DIMM_DDR3_D52	IO_L13N_T2_MRCC_16	C27
DIMM_DDR3_D53	IO_L17P_T2_16	B30
DIMM_DDR3_D54	IO_L18P_T2_16	E29
DIMM_DDR3_D55	IO_L14P_T2_SRCC_16	E28
DIMM_DDR3_D56	IO_L20N_T3_16	F28
DIMM_DDR3_D57	IO_L22N_T3_16	F30
DIMM_DDR3_D58	IO_L24P_T3_16	H30
DIMM_DDR3_D59	IO_L20P_T3_16	G28
DIMM_DDR3_D60	IO_L19P_T3_16	H24
DIMM_DDR3_D61	IO_L22P_T3_16	G29
DIMM_DDR3_D62	IO_L23N_T3_16	H27
DIMM_DDR3_D63	IO_L23P_T3_16	H26
DIMM_DDR3_DM0	IO_L4P_T0_18	K13
DIMM_DDR3_DM1	IO_L11P_T1_SRCC_18	H14
DIMM_DDR3_DM2	IO_L18P_T2_18	D11
DIMM_DDR3_DM3	IO_L20P_T3_18	E14
DIMM_DDR3_DM4	IO_L5P_T0_16	F26
DIMM_DDR3_DM5	IO_L12P_T1_MRCC_16	C25

www.alinx.com 18 / 48

DIMM_DDR3_DM6	IO_L14N_T2_SRCC_16	D28
DIMM_DDR3_DM7	IO_L24N_T3_16	G30
DIMM_DDR3_DQS0_P	IO_L3P_T0_DQS_18	L12
DIMM_DDR3_DQS0_N	IO_L3N_T0_DQS_18	L13
DIMM_DDR3_DQS1_P	IO_L9P_T1_DQS_18	J16
DIMM_DDR3_DQS1_N	IO_L9N_T1_DQS_18	H16
DIMM_DDR3_DQS2_P	IO_L15P_T2_DQS_18	C12
DIMM_DDR3_DQS2_N	IO_L15N_T2_DQS_18	B12
DIMM_DDR3_DQS3_P	IO_L21P_T3_DQS_18	D14
DIMM_DDR3_DQS3_N	IO_L21N_T3_DQS_18	C14
DIMM_DDR3_DQS4_P	IO_L3P_T0_DQS_16	F25
DIMM_DDR3_DQS4_N	IO_L3N_T0_DQS_16	E25
DIMM_DDR3_DQS5_P	IO_L9P_T1_DQS_16	B28
DIMM_DDR3_DQS5_N	IO_L9N_T1_DQS_16	A28
DIMM_DDR3_DQS6_P	IO_L15P_T2_DQS_16	C29
DIMM_DDR3_DQS6_N	IO_L15N_T2_DQS_16	B29
DIMM_DDR3_DQS7_P	IO_L21P_T3_DQS_16	G27
DIMM_DDR3_DQS7_N	IO_L21N_T3_DQS_16	F27
DIMM_DDR3_A0	IO_L11P_T1_SRCC_17	F21
DIMM_DDR3_A1	IO_L8P_T1_17	D21
DIMM_DDR3_A2	IO_L11N_T1_SRCC_17	E21
DIMM_DDR3_A3	IO_L16N_T2_17	F18
DIMM_DDR3_A4	IO_L3N_T0_DQS_17	H17
DIMM_DDR3_A5	IO_L17N_T2_17	B17
DIMM_DDR3_A6	IO_L4P_T0_17	J19
DIMM_DDR3_A7	IO_L17P_T2_17	C17
DIMM_DDR3_A8	IO_L1N_T0_17	J18
DIMM_DDR3_A9	IO_L15N_T2_DQS_17	C16
DIMM_DDR3_A10	IO_L6P_T0_17	K19
DIMM_DDR3_A11	IO_L16P_T2_17	G18
DIMM_DDR3_A12	IO_L1P_T0_17	K18
DIMM_DDR3_A13	IO_L9P_T1_DQS_17	G22
DIMM_DDR3_A14	IO_L15P_T2_DQS_17	D16
DIMM_DDR3_A15	IO_L5N_T0_17	L18
DIMM_DDR3_BA0	IO_L4N_T0_17	H19
DIMM_DDR3_BA1	IO_L2P_T0_17	H20

www.alinx.com 19 / 48

DIMM_DDR3_BA2	IO_L3P_T0_DQS_17	J17
DIMM_DDR3_WE	IO_L7P_T1_17	H21
DIMM_DDR3_RAS	IO_L2N_T0_17	G20
DIMM_DDR3_CAS	IO_L6N_T0_VREF_17	K20
DIMM_DDR3_S0	IO_L9N_T1_DQS_17	F22
DIMM_DDR3_S1	IO_L8N_T1_17	C21
DIMM_DDR3_CKE0	IO_L5P_T0_17	L17
DIMM_DDR3_CKE1	IO_L18P_T2_17	G17
DIMM_DDR3_ODT0	IO_L10P_T1_17	D22
DIMM_DDR3_ODT1	IO_L7N_T1_17	H22
DIMM_DDR3_CLK0_P	IO_L12P_T1_MRCC_17	D17
DIMM_DDR3_CLK0_N	IO_L12N_T1_MRCC_17	D18
DIMM_DDR3_CLK1_P	IO_L14P_T2_SRCC_17	E19
DIMM_DDR3_CLK1_N	IO_L14N_T2_SRCC_17	D19
DIMM_DDR3_RESET	IO_L18N_T2_17	F17

Part 5: QSPI Flash

The AX7325 FPGA development board is equipped with one128MBit Quad-SPI FLASH, and the model is N25Q128, which uses the 3.3V CMOS voltage standard. Due to the non-volatile nature of QSPI FLASH, it can store FPGA configuration Bin files and other user data files in use. The specific models and related parameters of QSPI FLASH are shown in Table 5-1.

Position	Model	Capacity	Factory
U7	N25Q128	128M Bit	Numonyx

Table 5-1: QSPI FLASH Specification

QSPI FLASH is connected to the dedicated pins of BANK0 and BANK14 of the FPGA chip. The clock pin is connected to CCLK0 of BANK0, and other data and chip select signals are connected to D00~D03 and FCS pins of BANK14 respectively. Figure 5-1 shows the hardware connection of QSPI Flash.

www.alinx.com 20 / 48

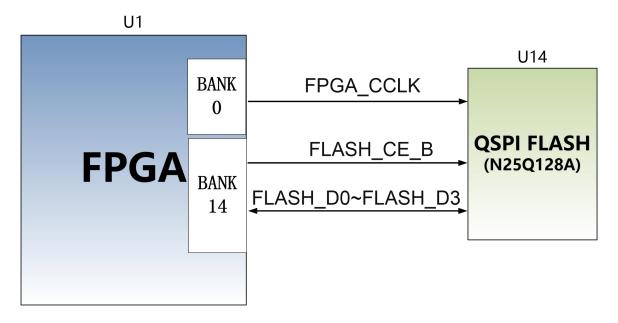


Figure 5-1: QSPI Flash Schematic

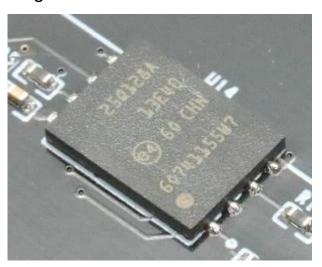


Figure 5-2: QSPI Flash on the FPGA Board

QSPI Flash pin assignments:

Signal Name	FPGA Pin Name	FPGA Pin Number
FPGA_CCLK	CCLK_0	B10
FLASH_CE_B	IO_L6P_T0_FCS_B_14	U19
FLASH_D0	IO_L1P_T0_D00_MOSI_14	P24
FLASH_D1	IO_L1N_T0_D01_DIN_14	R25
FLASH_D2	IO_L2P_T0_D02_14	R20
FLASH_D3	IO_L2N_T0_D03_14	R21

www.alinx.com 21 / 48

Part 6: Clock configuration

The AX7325 FPGA development board provides a 200Mhz differential active clock for the FPGA system. In addition, there is a programmable clock chip SI5338P on the board to provide a differential clock source for the FPGA logic part and the high-speed transceiver GTX part.

Part 6.2: 200Mhz differential clock source

A differential 200MHz clock source is provided on the FPGA development board to provide the system clock to the FPGA. The crystal differential output is connected to the global clock (MRCC) of the FPGA BANK33, which can be used to drive the DDR controller operating clock and other user logic in the FPGA. The schematic diagram of the clock source is shown in Figure 6-1.

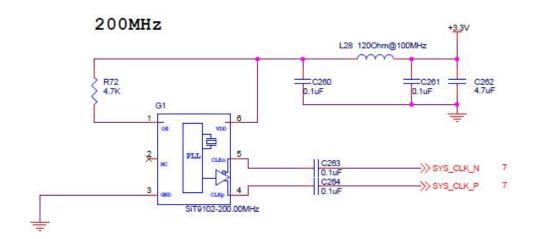


Figure 6-1: 200Mhz System Clock Source Schematic

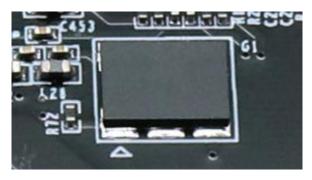


Figure 6-2: 200Mhz active crystal oscillator on the FPGA Board

www.alinx.com 22 / 48

System Clock pin assignments:

Signal Name	FPGA Pin
SYS_CLK_P	AE10
SYS_CLK_N	AF10

Part 6.3: Programmable clock source

The programmable clock source mainly provides programmable reference clocks for the high-speed transceiver GTX and DIMM DDR controllers. Different data communication of GTX requires different reference clocks, such as fiber-optic communication, and needs to provide GTX transceiver 125Mhz reference clock for FPGA. The programmable clock source is implemented by SILICON LABS chip Si5338. The FPGA chip can configure the Si2338 chip to generate four reference clock signals through the I2C register configuration. The first clock is provided to BANK17 as the reference clock of the DIMM DDR3 controller. The second reference clock is provided to BANK118 as the reference clock for the 40G fiber-optic communication of the GTX transceiver. The third reference clock is provided to BANK117 as the reference clock for the 10G SPF fiber-optic communication of the GTX transceiver. The fourth reference clock is provided For BANK116, a reference clock is provided for PCIE communication of the GTX transceiver. A schematic diagram of the Si5338 circuit design is shown in Figure 6-3:

www.alinx.com 23 / 48

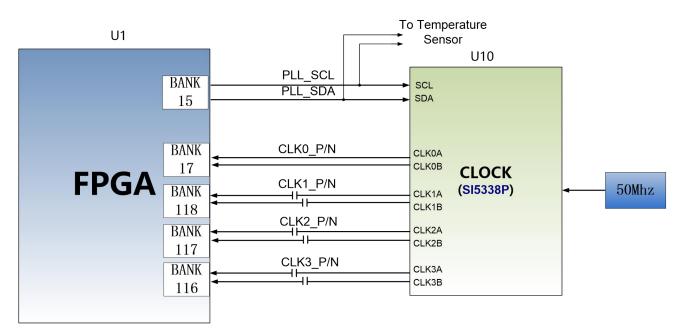


Figure 6-3: Programmable Clock Source Schematic

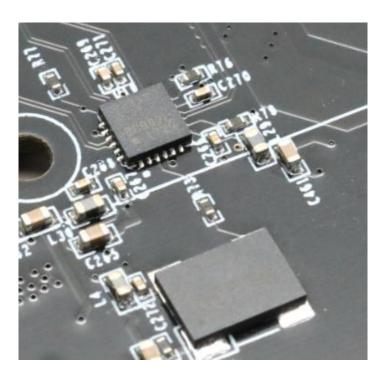


Figure 6-4: Programmable Clock Source on the FPGA Board

Programmable Clock Source FPGA pin assignments:

Signal Name	FPGA Pin
PLL_SCL	P23
PLL_SDA	N25

www.alinx.com 24 / 48

CLK0_P	F20
CLK0_N	E20
CLK1_P	C8
CLK1_N	C7
CLK2_P	G8
CLK2_N	G7
CLK3_P	L8
CLK3_N	L7

Part7: USB to Serial Port

The AX7325 FPGA development board is equipped with a Uart to USB interface for serial communication and debugging of the development board. The conversion chip uses the USB-UAR chip of Silicon Labs CP2102GM. The CP2102 serial chip and the FPGA are connected by a level-shifting chip to adapt to different FPGA BANK voltages. The USB interface uses the MINI USB interface, which can be connected to the USB port of the upper PC for serial data communication on the FPGA development board with a USB cable. The schematic diagram of the USB Uart circuit design is shown below:

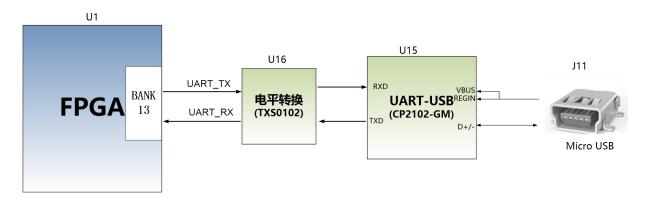


Figure 7-1: USB to serial port schematic

www.alinx.com 25 / 48

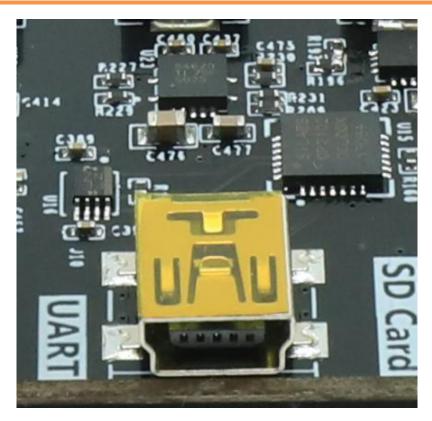


Figure 7-2: USB to serial port on the FPGA Board

USB to serial port pin assignment:

Signal Name	FPGA Pin Name	FPGA Pin Number	Description
UART_RX	PS_MIO13_500	AJ26	Uart Data Input
UART_TX	PS_MIO12_500	AK26	Uart Data Output

Part 8: SFP Interface

The AX7325 FPGA development board has four optical interfaces. Users can purchase SFP optical modules (1.25G, 2.5Goptical modules on the market) insert them into these four optical interfaces for optical data communication. The four fiber interfaces are connected to the four RX/TXs of the GNK transceiver of the FPGA BANK117. The TX signal and the RX signal are connected to the FPGA and the optical module through a DC blocking capacitor in a differential signal mode. Each TX transmit and RX receive data rate is up to 10Gb/s. The BANK117's GTX transceiver reference clock is provided by a programmable clock chip.

www.alinx.com 26 / 48

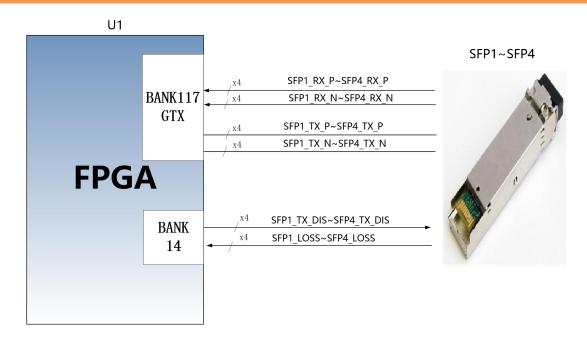


Figure 8-1: Optical Fiber Design Schematic

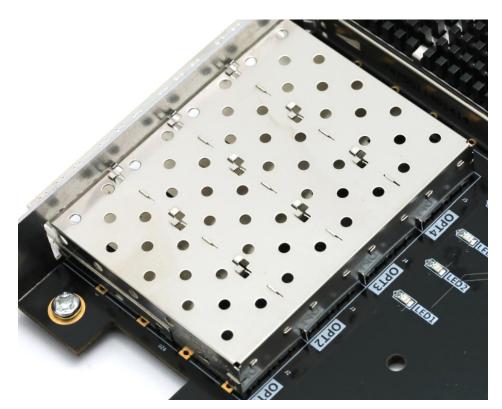


Figure 8-2: SFP interfaces on the FPGA Board

The 1st fiber interface FPGA pin assignment is as follows:

Signal Name	FPGA PIN	Description
SFP1_TX_P	K2	SFP1 Data Transfer (Positive)

www.alinx.com 27 / 48

SFP1_TX_N	K1	SFP1 Data Transfer (Negative)
SFP1_RX_P	K6	SFP1 Data Receiver (Positive)
SFP1_RX_P	K5	SFP1 Data Receiver (Negative)
SFP1_TX_DIS	T28	SFP1 Optical Transfer Disable, active high
SFP1_LOSS	R28	SFP1 Optical LOSS,High level means no
		light signal is received

The 2nd fiber interface FPGA pin assignment is as follows:

Signal Name	FPGA PIN	Description
SFP2_TX_P	J4	SFP2 Data Transfer (Positive)
SFP2_TX_N	J3	SFP2 Data Transfer (Negative)
SFP2_RX_P	H6	SFP2 Data Receiver (Positive)
SFP2_RX_P	H5	SFP2 Data Receiver (Negative)
SFP2_TX_DIS	T28	SFP2Optical Transfer Disable, active high
SFP2_LOSS	T26	SFP2 Optical LOSS,High level means no
		light signal is received

The 3rd fiber interface FPGA pin assignment is as follows:

Signal Name	FPGA PIN	Description
SFP3_TX_P	H2	SFP3 Data Transfer (Positive)
SFP3_TX_N	H1	SFP3 Data Transfer (Negative)
SFP3_RX_P	G4	SFP3 Data Receiver (Positive)
SFP3_RX_P	G3	SFP3 Data Receiver (Negative)
SFP3_TX_DIS	U28	SFP3 Optical Transfer Disable, active high
SFP3_LOSS	U27	SFP3 Optical LOSS,High level means no
		light signal is received

The 4th fiber interface FPGA pin assignment is as follows:

Signal Name	FPGA PIN	Description
SFP4_TX_P	F2	SFP4 Data Transfer (Positive)
SFP4_TX_N	F1	SFP4 Data Transfer (Negative)
SFP4_RX_P	F6	SFP4 Data Receiver (Positive)
SFP4_RX_P	F5	SFP4 Data Receiver (Negative)
SFP4_TX_DIS	U25	SFP4 Optical Transfer Disable, active
		high
SFP4_LOSS	A18	SFP4 Optical LOSS,High level means no
		light signal is received

www.alinx.com 28 / 48

Part 9: QSFP+ Fiber interface

The AX7325 development board has a four-small fiber optic interface that plugs into the QSFP+. The fiber optic transceiver integrates 4 transmit channels and 4 receive channels. This 4-channel pluggable interface has a transfer rate of 40Gbps. It need the customer's requirements of Meets users' higher-density, high-speed pluggable fiber-optic communication solutions.

The transceiver signal of the QSFP+ fiber interface is directly connected to the GNK transceiver of the FPGA BANK118. The four TX signals and RX signals of the fiber are directly connected to the GTX transceiver. Because the speed of a single GTX is as high as 10 Gbps, the speed of four GTXs can be as high as 40 Gbps. The reference clock for the BANK118's GTX transceiver is provided by the programmable clock chip SI5338P.

The QSFP+ fiber design diagram of the FPGA development board is shown in Figure 9-1, where the control signal of the fiber is connected to the BANK14 of the FPGA.

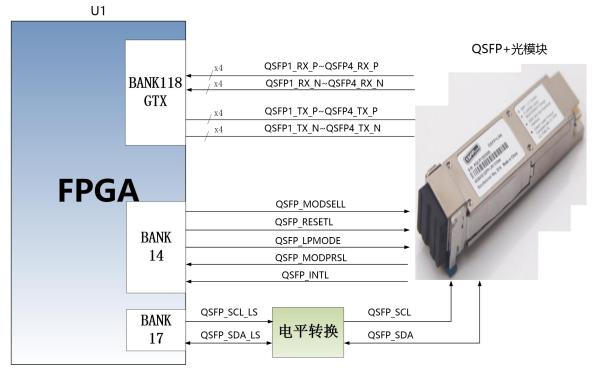


Figure 9-1: QSFP+ Fiber Design Diagram

www.alinx.com 29 / 48

Figure 9-2: QSFP+ fiber communication interface on the Board

The QSFP+ fiber interface FPGA pin assignments are as follows:

Signal Name	FPGA Pin	Description
		•
QSFP1_TX_P	D2	QSFP + 1 st Channel Data Transmission Positive
QSFP1_TX_N	D1	QSFP + 1 st Channel Data Transmission Negative
QSFP2_TX_P	B2	QSFP + 2 nd Channel Data Transmission Positive
QSFP2_TX_N	B1	QSFP + 2 nd Channel Data Transmission Negative
QSFP3_TX_P	C4	QSFP + 3 rd Channel Data Transmission Positive
QSFP3_TX_N	C3	QSFP + 3 rd Channel Data Transmission Negative
QSFP4_TX_P	A4	QSFP + 4 th Channel Data Transmission Positive
QSFP4_TX_N	A3	QSFP + 4 th Channel Data Transmission Negative
QSFP1_RX_P	E4	QSFP + 1 st Channel Data Send Positive
QSFP1_RX_N	E3	QSFP + 1 st Channel Data Send Negative
QSFP2_RX_P	В6	QSFP + 2 nd Channel Data Send Positive
QSFP2_RX_N	B5	QSFP + 2 nd Channel Data Send Negative
QSFP3_RX_P	D6	QSFP + 3 rd Channel Data Send Positive
QSFP3_RX_N	D5	QSFP + 3 rd Channel Data Send Negative
QSFP4_RX_P	A8	QSFP + 4 th Channel Data Send Positive
QSFP4_RX_N	A7	QSFP + 4 th Channel Data Send Negative
QSFP_MODSELL	R30	Mode selection, low level I2C is valid
QSFP_RESETL	U30	Reset signal, low reset
QSFP_MODPRSL	U22	The optical module has a signal and is active low.
QSFP_INTL	R24	Interrupt Signal, Active Low

www.alinx.com 30 / 48

QSFP_LPMODE	V26	Low Power Mode Selection	
QSFP_SCL	A20	I2C Clock Signal	
QSFP_SDA	A21	I2C Data Signal	

Part 10: PCle slot

The AX7325 FPGA development board provides an industrial-grade high-speed data transfer PCIe x8 interface. The PCIE card interface conforms to the standard PCIe card electrical specifications and can be used directly on the x8 PCIe slot of a normal PC. Data communication between PCIEex8. PCIEex4, PCIex2, and PCIex1 can be realized between the FPGA development board and the computer.

The transmit and receive signals of the PCle interface are directly connected to the GTX transceivers of the FPGA BANK115 and BANK116. The 8 TX signals and RX signals are connected to the BANK115 and BANK116 by differential signals. Supports PCI Express 2.0 standard, single channel communication rate up to 5Gbps.

The design diagram of the PCIe interface of the AX7325 FPGA development board is shown in Figure 10-1, where the TX transmit signal and the reference clock CLK signal are connected in AC coupled mode.

www.alinx.com 31 / 48

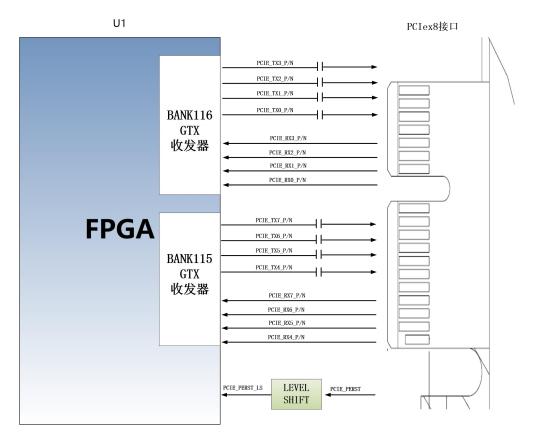


Figure 10-1: PCle x 8 Interface Design Diagram

Figure 10-2: PClex8 on the FPGA Board

PClex8 Interface Pin Assignment:

Signal Name	FPGA Pin	Description	
PCIE_RX0_P	M6	PCIE Channel 0 Data Receive Positive	
PCIE_RX0_N	M5	PCIE Channel 0 Data Receive Negative	
PCIE_RX1_P	P6	PCIE Channel 1 Data Receive Positive	
PCIE_RX1_N	P5	PCIE Channel 1 Data Receive Negative	
PCIE_RX2_P	R4	PCIE Channel 2 Data Receive Positive	
PCIE_RX2_N	R3	PCIE Channel 2 Data Receive Negative	

www.alinx.com 32 / 48

PCIE_RX3_P	T6	PCIE Channel 3 Data Receive Positive		
PCIE_RX3_N	T5	PCIE Channel 3 Data Receive Negative		
PCIE_RX4_P	V6	PCIE Channel 4 Data Receive Positive		
PCIE_RX4_N	V5	PCIE Channel 4 Data Receive Negative		
PCIE_RX5_P	W4	PCIE Channel 5 Data Receive Positive		
PCIE_RX5_N	W3	PCIE Channel 5 Data Receive Negative		
PCIE_RX6_P	Y6	PCIE Channel 6 Data Receive Positive		
PCIE_RX6_N	Y5	PCIE Channel 6 Data Receive Negative		
PCIE_RX7_P	AA4	PCIE Channel 7 Data Receive Positive		
PCIE_RX7_N	AA3	PCIE Channel 7 Data Receive Negative		
PCIE_TX0_P	L4	PCIE Channel 0 Data Transmit Positive		
PCIE_TX0_N	L3	PCIE Channel 0 Data Transmit Negative		
PCIE_TX1_P	M2	PCIE Channel 1 Data Transmit Positive		
PCIE_TX1_N	M1	PCIE Channel 1 Data Transmit Negative		
PCIE_TX2_P	N4	PCIE Channel 2 Data Transmit Positive		
PCIE_TX2_N	N3	PCIE Channel 2 Data Transmit Negative		
PCIE_TX3_P	P2	PCIE Channel 3 Data Transmit Positive		
PCIE_TX3_N	P1	PCIE Channel 3 Data Transmit Negative		
PCIE_TX4_P	T2	PCIE Channel 4 Data Transmit Positive		
PCIE_TX4_N	T1	PCIE Channel 4 Data Transmit Negative		
PCIE_TX5_P	U4	PCIE Channel 5 Data Transmit Positive		
PCIE_TX5_N	U3	PCIE Channel 5 Data Transmit Negative		
PCIE_TX6_P	V2	PCIE Channel 6 Data Transmit Positive		
PCIE_TX6_N	V1	PCIE Channel 6 Data Transmit Negative		
PCIE_TX7_P	Y2	PCIE Channel 7 Data Transmit Positive		
PCIE_TX7_N	Y1	PCIE Channel 7 Data Transmit Negative		
PCIE_PERST	B18	PCIE Board Reset Signal		

Part 11: Temperature Sensor

A high-precision, low-power, digital temperature sensor chip is mounted on the AX7325 FPGA development board, and the model is LM75 of ON Semiconductor. The temperature accuracy of the LM75 chip is 0.5 degrees. The sensor and FPGA are directly connected to the I2C digital interface. The FPGA reads the temperature near the current FPGA development board

www.alinx.com 33 / 48

through the I2C interface. Figure 11-1 below shows the design of the LM75 sensor chip.

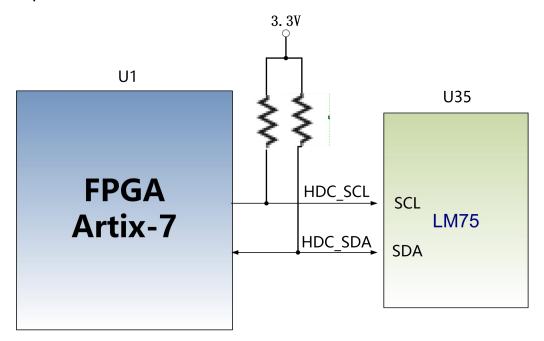


Figure 11-1: LM75 Sensor Schematic

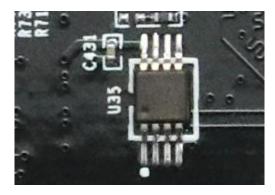


Figure 11-2: LM75 Sensor on the FPGA Board

LM75 Sensor Pin Assignment

Pin Name	FPGA Pin	
LM75_SCL	P23	
LM75_SDA	N25	

Part 12: SD Card Slot

The SD card (Secure Digital Memory Card) is a memory card

www.alinx.com 34 / 48

based on the semiconductor flash memory process. It was completed in 1999 by the Japanese Panasonic-led concept, and the participants Toshiba and SanDisk of the United States conducted substantial research and development. In 2000, these companies launched the SD Association (Secure Digital Association), which has a strong lineup and attracted a large number of vendors. These include IBM, Microsoft, Motorola, NEC, Samsung, and others. Driven by these leading manufacturers. SD cards have become the most widely used memory card in consumer digital devices.

The AX7325 development board includes a Micro SD card interface to provide users with access to SD card memory for storing pictures, music or other user data files.

The SDIO signal is connected to the IO signal of the FPGA BANK12, because the VCCIO of the BANK is VADJ, the default is +2.5V. However, the SD card has a data level of 3.3 and needs to be connected via the TXS02612 level shifter. The schematic diagram of the FPGA and SD card connector is shown in Figure 12-1.

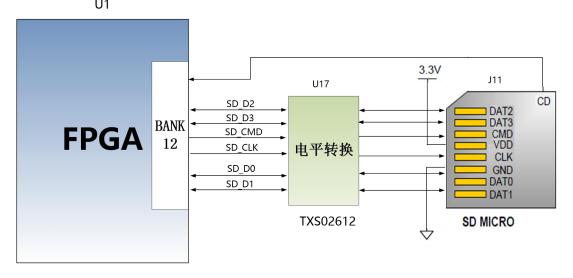


Figure 12-1: SD Card Slot Schematic

www.alinx.com 35 / 48

Figure 12-2: SD Card Slot on the FPGA Board

SD Card Slotpin assignment:

Signal Name	FPGA Pin	FPGA Pin Number	Description
SD_CLK	IO_L23P_T3_12	AH21	SD Clock Signal
SD_CMD	IO_L23N_T3_12	AJ21	SD Command Signal
SD_D0	IO_L21P_T3_DQS_12	AJ22	SDData0
SD_D1	IO_L21N_T3_DQS_12	AJ23	SDData1
SD_D2	IO_L22P_T3_12	AG20	SDData2
SD_D3	IO_L22N_T3_12	AH20	SDData3
SD_CD	IO_25_12	AE20	SD card insertion signal

Part 13: FMC connector

The AX7325 development board comes with a standard FMC LPC expansion port that can be connected to various FMC modules of XILINX or ALINX (HDMI input and output modules, binocular camera modules, high-speed AD modules, etc.). The FMC expansion port contains 34 pairs of differential IO signals and one I2C bus signal.

The 33 pairs of differential signals of the FMC expansion port are connected to the IO of the BANK12 and BANK13 of the FPGA chip. The IO level standard of BANK12 and BANK13 is determined by the voltage VADJ of BANK. The default is +2.5V. The 34 pairs of differential signals connected to the FMC support LVDS data communication. The schematic of the FPGA and FMC connectors is shown in Figure 13-1:

www.alinx.com 36 / 48

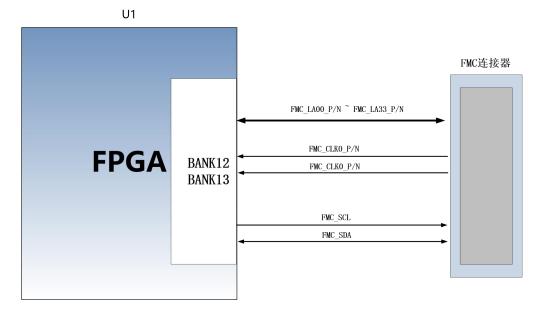


Figure 13-1: FMC Connector diagram

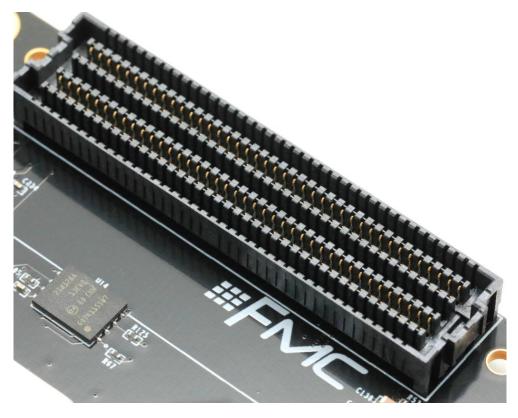


Figure 13-2: FMC Connector on the FPGA Board

FMC Connectors Pin Assignment

Signal Name	FPGA Pin Numer	FPGA Pin Number	Description
FMC_CLK0_P	IO_L12P_T1_MRCC_12	AD23	FMC reference 1st reference clock P
FMC_CLK0_N	IO_L12N_T1_MRCC_12	AE24	FMC reference 1st reference clock N

www.alinx.com 37 / 48

FMC_CLK1_P	IO_L13P_T2_MRCC_13	AG29	FMC reference 2 nd reference clock P
FMC_CLK1_N	IO_L13N_T2_MRCC_13	AH29	FMC reference 2 nd reference clock N
FMC_LA00_CC_P	IO_L13P_T2_MRCC_12	AF22	FMC reference 0 th channel data (clock) P
FMC_LA00_CC_N	IO_L13N_T2_MRCC_12	AG23	FMC reference 0 th channel data (clock) N
FMC_LA01_CC_P	IO_L14P_T2_SRCC_12	AG24	FMC reference 1 st channel data (clock) P
FMC_LA01_CC_N	IO_L14N_T2_SRCC_12	AH24	FMC reference 1 st channel data (clock) N
FMC_LA02_P	IO_L17P_T2_12	AK23	FMC reference 2 nd channel data P
FMC_LA02_N	IO_L17N_T2_12	AK24	FMC reference 2 nd channel data N
FMC_LA03_P	IO_L15P_T2_DQS_12	AJ24	FMC reference 3 rd channel data P
FMC_LA03_N	IO_L15N_T2_DQS_12	AK25	FMC reference 3 rd channel data N
FMC_LA04_P	IO_L18P_T2_12	AG25	FMC reference 4 th channel data P
FMC_LA04_N	IO_L18N_T2_12	AH25	FMC reference 4 th channel data N
FMC_LA05_P	IO_L11P_T1_SRCC_12	AE23	FMC reference 5 th channel data P
FMC_LA05_N	IO_L11N_T1_SRCC_12	AF23	FMC reference 5 th channel data N
FMC_LA06_P	IO_L20P_T3_12	AG22	FMC reference 6 th channel data P
FMC_LA06_N	IO_L20N_T3_12	AH22	FMC reference 6 th channel data N
FMC_LA07_P	IO_L9P_T1_DQS_12	AC24	FMC reference 7 th channel data P
FMC_LA07_N	IO_L9N_T1_DQS_12	AD24	FMC reference 7 th channel data N
FMC_LA08_P	IO_L16P_T2_12	AE25	FMC reference 8 th channel data P
FMC_LA08_N	IO_L16N_T2_12	AF25	FMC reference 8 th channel data N
FMC_LA09_P	IO_L8P_T1_12	AC22	FMC reference 9 th channel data P
FMC_LA09_N	IO_L8N_T1_12	AD22	FMC reference 9 th channel data N
FMC_LA10_P	IO_L10P_T1_12	AD21	FMC reference 10 th channel data P
FMC_LA10_N	IO_L10N_T1_12	AE21	FMC reference 10 th channel data N
FMC_LA11_P	IO_L3P_T0_DQS_12	AB22	FMC reference 11 th channel data P
FMC_LA11_N	IO_L3N_T0_DQS_12	AB23	FMC reference 11 th channel data N
FMC_LA12_P	IO_L7P_T1_12	AB24	FMC reference 12 th channel data P
FMC_LA12_N	IO_L7N_T1_12	AC25	FMC reference 12 th channel data N
FMC_LA13_P	IO_L5P_T0_12	AC20	FMC reference 13 th channel data P
FMC_LA13_N	IO_L5N_T0_12	AC21	FMC reference 13 th channel data N
FMC_LA14_P	IO_L2P_T0_12	Y21	FMC reference 14 th channel data P
FMC_LA14_N	IO_L2N_T0_12	AA21	FMC reference 14 th channel data N

www.alinx.com 38 / 48

FMC_LA15_P	IO_L1P_T0_12	Y23	FMC reference 15 th channel data P
FMC_LA15_N	IO_L1N_T0_12	Y24	FMC reference 15 th channel data N
FMC_LA16_P	IO_L4P_T0_12	AA22	FMC reference 16 th channel data P
FMC_LA16_N	IO_L4N_T0_12	AA23 FMC reference 16 th channel data I	
FMC_LA17_CC_P	IO_L14P_T2_SRCC_13	AE28	FMC reference 17th channel data (clock) P
FMC_LA17_CC_N	IO_L14N_T2_SRCC_13	AF28	FMC reference 17th channel data (clock) P
FMC_LA18_CC_P	IO_L12P_T1_MRCC_13	AB27	FMC reference 18th channel data (clock) P
FMC_LA18_CC_N	IO_L12N_T1_MRCC_13	AC27	FMC reference 18th channel data (clock) P
FMC_LA19_P	IO_L15P_T2_DQS_13	AK29	FMC reference 19 th channel data P
FMC_LA19_N	IO_L15N_T2_DQS_13	AK30	FMC reference 19 th channel data N
FMC_LA20_P	IO_L20P_T3_13	AJ27	FMC reference 20 th channel data P
FMC_LA20_N	IO_L20N_T3_13	AK28	FMC reference 20 th channel data N
FMC_LA21_P	IO_L18P_T2_13	AG30	FMC reference 21st channel data P
FMC_LA21_N	IO_L18N_T2_13	AH30	FMC reference 21st channel data N
FMC_LA22_P	IO_L17P_T2_13	AJ28	FMC reference 22 nd channel data P
FMC_LA22_N	IO_L17N_T2_13	AJ29	FMC reference 22 nd channel data N
FMC_LA23_P	IO_L5P_T0_13	AA27	FMC reference 23 rd channel data P
FMC_LA23_N	IO_L5N_T0_13	AB28	FMC reference 23 rd channel data N
FMC_LA24_P	IO_L9P_T1_DQS_13	AD29	FMC reference 24 th channel data P
FMC_LA24_N	IO_L9N_T1_DQS_13	AE29	FMC reference 24 th channel data N
FMC_LA25_P	IO_L16P_T2_13	AE30	FMC reference 25 th channel data P
FMC_LA25_N	IO_L16N_T2_13	AF30	FMC reference 25 th channel data N
FMC_LA26_P	IO_L3P_T0_DQS_13	Y28	FMC reference 26 th channel data P
FMC_LA26_N	IO_L3N_T0_DQS_13	AA28	FMC reference 26 th channel data N
FMC_LA27_P	IO_L1P_T0_13	Y26	FMC reference 27 th channel data P
FMC_LA27_N	IO_L1N_T0_13	AA26	FMC reference 27 th channel data N
FMC_LA28_P	IO_L7P_T1_13	AC29	FMC reference 28 th channel data P
FMC_LA28_N	IO_L7N_T1_13	AC30	FMC reference 28 th channel data N
FMC_LA29_P	IO_L11P_T1_SRCC_13	AD27	FMC reference 29 th channel data P
FMC_LA29_N	IO_L11N_T1_SRCC_13	AD28	FMC reference 29 th channel data N
FMC_LA30_P	IO_L8P_T1_13	Y30	FMC reference 30 th channel data P
FMC_LA30_N	IO_L8N_T1_13	AA30	FMC reference 30 th channel data N

www.alinx.com 39 / 48

FMC_LA31_P	IO_L10P_T1_13	AB29	FMC reference 31st channel data P
FMC_LA31_N	IO_L10N_T1_13	AB30	FMC reference 31st channel data N
FMC_LA32_P	IO_L2P_T0_13	W27	FMC reference 32 nd channel data P
FMC_LA32_N	IO_L2N_T0_13	W28	FMC reference 32 nd channel data N
FMC_LA33_P	IO_L4P_T0_13	W29	FMC reference 33 rd channel data P
FMC_LA33_N	IO_L4N_T0_13	Y29	FMC reference 33 rd channel data N
FMC_SCL	IO_L20P_T3_17	A16	FMC I2C Bus Clock
FMC_SDA	IO_L20N_T3_17	A17	FMC I2C Bus Data

Part 14: Expansion Header

The AX7325 FPGA development board is reserved with one 0.1inch spacing standard 40-pin expansion headers J16, which is used to connect the ALINX modules or the external circuit designed by the user. The expansion port has 40 signals, of which 1-channel 5V power supply, 2-channel3.3 V power supply,3-channle ground and 34 IOs. Do not directly connect the IO directly to the 5V device to avoid burning the FPGA. If you want to connect 5V equipment, you need to connect level conversion chip.

The circuit of the expansion port (J6) is shown in Figure 14-1.

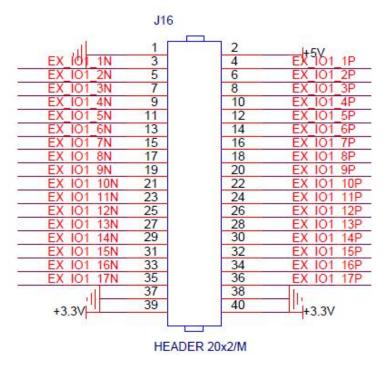


Figure 14-1: Expansion header J16 schematic

www.alinx.com 40 / 48

Figure 14-2: Expansion header J16on the FPGA Board

J16 Expansion Header Pin Assignment

J16 Pin Number	FPGA Pin	J16 Pin Number	FPGA Pin
1	GND	2	+5V(Output)
3	J24	4	J23
5	J22	6	J21
7	J26	8	K26
9	K30	10	L30
11	L28	12	M28
13	M27	14	N27
15	N30	16	N29
17	L27	18	L26
19	J28	20	J27
21	H29	22	J29
23	K29	24	K28
25	L20	26	M20
27	K21	28	L21
29	L23	30	L22
31	K24	32	K23
33	K25	34	L25
35	M29	36	M19
37	GND	38	GND
39	+3.3V(Output)	40	+3.3V(Output)

Part 15: LED Light

There are five red LEDs on the AX7325 FPGA development board, one of

www.alinx.com 41 / 48

which is the power indicator (PWR), one is configure indicator, four are usersLED lights (LED1~LED4). When the AX7325 FPGA board is powered on, the power indicator will light up; whenthe AX7325 FPGA is configured, the configuration LED will light up; 4 user LEDs (LED1~LED4) are connected to the IO of the FPGA BANK17, the user can control the lighting and extinction through the program. When the IO voltage connected to the user LED is configured low level, the user LED lights up. When the connected IO voltage is configured as high level, the user LED will be extinguished. Because the level of BANK17 is 1.5V, here we have added a three-stage tube to drive the LED to light up. The LEDs hardware connection is shown in Figure 15-1.

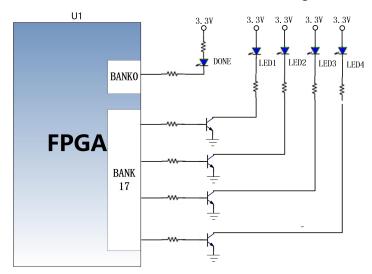


Figure 15-1: The LED lights hardware connection diagram

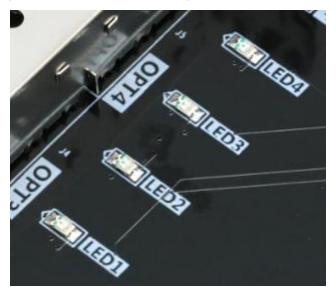


Figure 15-2: The User LEDs on the FPGA Board

www.alinx.com 42 / 48

Signal Name	FPGA Pin	FPGA Pin Number	Description
LED1	IO_L23N_T3_17	A22	User LED1
LED2	IO_L24P_T3_17	C19	User LED2
LED3	IO_L24N_T3_17	B19	User LED3
LED4	IO_25_17	E18	User LED4

Part16: User Buttons

The AX7325 FPGA development board contains two user buttons KEY1~KEY2. The button is active low. The circuit of user button part is shown in Figure 16-1.

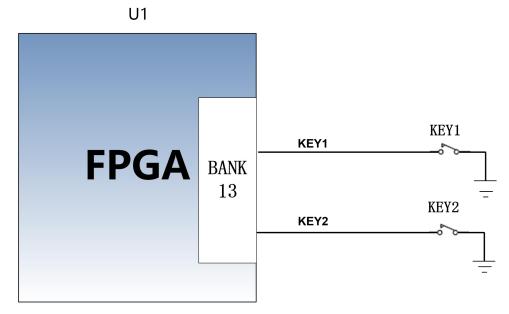


Figure 16-1: User ButtonsSchematic

Figure 16-2: User Buttons on the FPGA Board

www.alinx.com 43 / 48

Signal Name	FPGA Pin	FPGA Pin Number	Description
KEY1	IO_L21P_T3_DQS_13	AG27	User Buttons KEY1 Input
KEY2	IO_L21N_T3_DQS_13	AG28	User Buttons KEY2 Input

Part 17: JTAG Interface

A JTAG interface is reserved JTAG interface one the AX7325 FPGAdevelopment board for downloading FPGA programs or firmware to FLASH. In order to prevent damage to the FPGA chip caused by hot plugging, a protection diode is added to the JTAG signal to ensure that the voltage of the signal is within the range accepted by the FPGA to avoid damage of the FPGA chip.

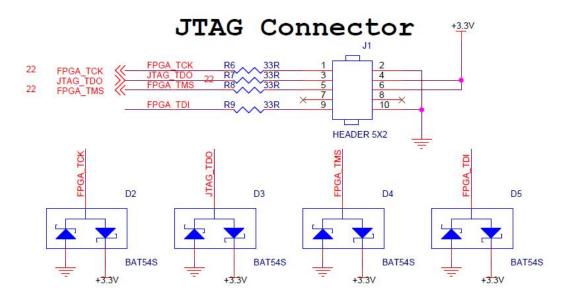


Figure 17-1: JTAG Interface Schematic

The Figure 17-2 detailed the JTAG interface on the AX7325 FPGA development board. Users can connect the PC and JTAG interface to debug the FPGA through the USB downloader provided by us. Be careful not to hot swap when JTAG cable is plugged and unplugged.

44 / 48 www.alinx.com

Figure 17-2: JTAG Interface on the FPGA board

Part 18: Power Supply

The power input voltage of the AX7325 FPGA development board is DC12V, and the external +12V power supply supplies power to the FPGA development board. The power supply DC12V is converted into 1.0V for FPGA Core power, which output current is up to 20A, meets the current demand of the core voltage of the FPGA

The power supply is converted into +3.3V, 1.8V and 1.5Vthree-way power supply through one DC/DC power supply chip TPS54620 and three DC/DC power supply chips MP1482; Then the +5V is converted into +1.8V and VADJ (+2.5V) two-way power supply through DC/DC power supply chip TLV62130;the +5V is converted into +1.0 V that required by GTX through DC/DC power supply chip EN6362QI. The +1.5V is converted into +1.2V required by GTX through LDO chip TPS74401. The +3.3V is converted into GTX auxiliary power +1.8Vthrough LDE chip SPX3819-1-8.The VTT and VREF voltages of DDR3 and SODIMM are generated by the TPS51200 chip.

The Power supply design diagrams shown in Figure 18-1.

www.alinx.com 45 / 48

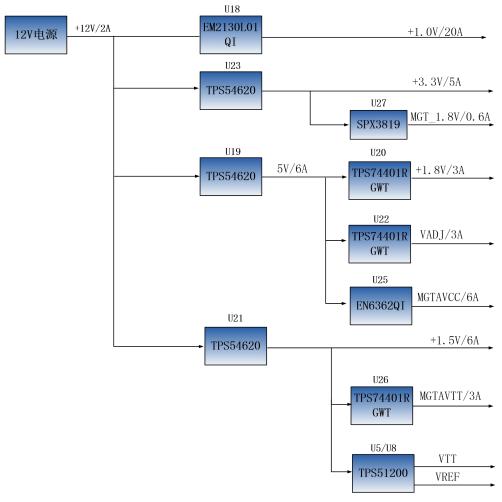


Figure 18-1: Power Supply Design Diagram

The functions of each power distribution are shown in the following table:

Power Supply	Function	
+1.0V	FPGA core voltage	
+3.3V	FPGA Bank0,Bank14,Bank15,QSIP FLASH, Clock Crystal,	
	SD Card, SFP Optical Module	
+1.8V	Gigabit Ethernet, HDMI, USB	
+1.5V	DDR3, SODIMM,	
	FPGA Bank33,Bank34,Bank35	
VADJ(+2.5V)	FPGA Bank12, Bank13, FMC	
VREF, VTT(+0.75V)	DDR3, SODIMM	
MGTAVCC(+1.0V)	FPGA Bank115, Bank116, Bank117, Bank118	
MGTAVTT(+1.2V)	FPGA Bank115, Bank116, Bank117, Bank118	
MGT_1.8V (+1.2V)	FPGA GTX auxiliary voltage	

www.alinx.com 46 / 48

Because the power supply of the FPGA has the power-on sequence requirements, in the circuit design, we have designed according to the power requirements of the chip. The power-on sequence is +1.0V->+1.8V->(+1.5 V, +3.3V, VCCIO) circuit design to ensure the normal operation of the chip.

Part19: Fan

Because AX7325 FPGA development board generates a lot of heat when it works normally, we add a heat sink and fan to the chip on the board to prevent the chip from overheating. The control of the fan is controlled by the FPGAChip. The control pin is connected to the IO of the BANK13. If the IO level output is low, the MOSFET is turned on and the fan is working. If the IO level output is high, the fan stops. The fan design on the board is shown in Figure 19-1.

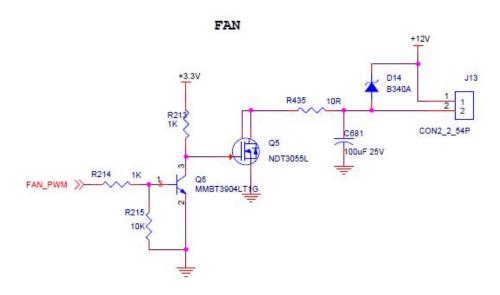


Figure 19-1: Fan design in the schematic

The fan has been screwed to the AX7325 FPGA development board before leaving the factory. The power of the fan is connected to the socket of J13. The red is positive and the black is negative.

www.alinx.com 47 / 48

Figure 19-2: Fan on the FPGA Board

Part 20: Structure Diagram

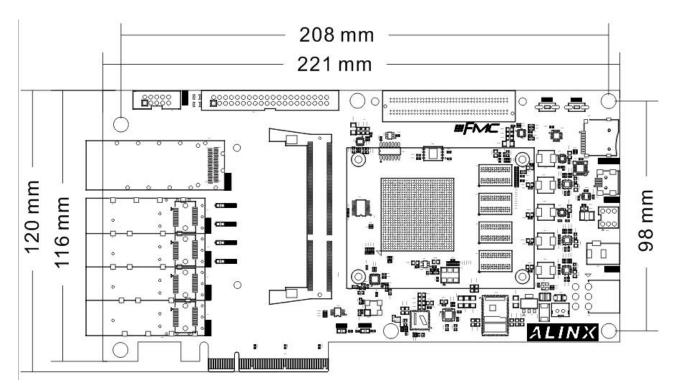


Figure 20-1: Structure Diagram (Top View)

www.alinx.com 48 / 48